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Two-Dimensional Commensurate Soliton Structures 
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A phase diagram of pinned soliton structures in two dimensions has been found 
for a repulsive interaction U(x) between solitons with U"(x) > O, The critical 
fugacity of the commensurate  soliton structure is shown to be proportional to 
U"(l), where l is the period of this structure. 
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The commensurate-incommensurate phase transition is associated with a 
spontaneous creation of linear defects--solitons or domain lines. In the 
one-dimensional case at zero temperature the soliton pinning by a lattice 
leads to a complicated sequence of commensurate soliton phases. (~ The 
same sequence arises in an anisotropic two-dimensional (2D) system at 
T = 0, where solitons are linear defects and not point defects as in the 1D 
case. A commensurate soliton structure in two dimensions melts at some 
finite temperature. This possibility has been previously proposed by Vil- 
lain. (2) The purpose of this work is to represent the phase diagram of a 2D 
system in the region of existence of commensurate soliton phases. 

There are two main physical realizations of our problem. The first one 
can be presented by a system of soliton lines placed into a weak substrate 
potential, i.e., by a 2D discrete s ine-Gordon model. The second possibility 
corresponds to a highly anisotropic lattice gas of particles with a strong 
attracting interaction along the y axis and a repulsive interaction along the 
x axis. Similar structures have been experimentally observed on the sur- 
faces [211] of W and Mo. (3) 
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According to Ref. 4, commensurate soliton structures at T = 0 exist in 
the range of the chemical potential /~ between /xc, and /xc2, where /~c, is 
defined by the vanishing of soliton energy and/zc2 is the point of soliton 
depinning. In this variable range a soliton system can be considered as a 
1D lattice gas with the Hamiltonian 

2 (1) 
m m , p > O  

Here m is an integer labeling valleys of the pinning potential, Up is the 
interaction energy of solitons, and n m = 0, 1 are the occupation numbers. 
The function Up is assumed to be positive, convex, and monotonically 
decreasing to zero at p ~ m. 

The total set of phases at T - - 0  can be described as a branching 
sequence (so-called "complete devil's staircase"). The main soliton se- 
quence, arising from the nearest-neighbor interaction only, consists of 
simple periodic phases ( p )  with the distance p between nearest solitons. At 
any bifurcation a new phase ( A B )  arises between any two neighboring 
phases (A)  and (B) .  We denote by (A)  the periodic structure with the 
elementary cell A. The symbol ( A B )  denotes the periodic structure formed 
as the dimerized sequence of A and B. For any rational concentration 
c = p / q  the corresponding periodic structure can be constructed by ex- 
panding c into the continuous fraction. (5) 

The 2x/z(c) regions of the existence of complicated soliton structures 
decrease with the growing of their periods q(c) according to the law 
AIx~qU"(q ) (the exact formulas for A/~(c) were derived in(6'7)). 

At T v a 0 the fluctuational energy of soliton lines has to be taken into 
account. Let Z = exp( -  Eo/T)  be  the fugacity of a kink on a soliton line 
and E 0 be the energy of a kink. In the spirit of the transfer-matrix method 
we shall consider the evolution of our system along the y direction playing 
the role of time. If Z <<p- ~, one can consider the evolution of a 1D system 
of particles (traces of soliton lines) interacting one with another via the 
one-dimensional potential U(x, - Xm). Kinks change the arrangement of 
particles. 

For any pair of neighbors (A)  and ~B) in the "complete devil's 
staircase" there exists a range of Z between min(Z~, Z~) and max(Z~2B, 
Z~82), where Z~ is the critical fugacity of the phase (A).  In this range the 
elementary cells A and B can be considered as new indivisible particles. 
Only kinks permutating the following neighbors A B into BA and vice versa 
will be taken into account. We neglect the probability of a kink between A 
and A or between B and B, since the energies of the resulting excitations 
are too large. 
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We introduce a fictitious lattice with the sites occupied with either a 
particle A or a particle B, represented by a spin variable o z taking the 
values _+ 1/2, respectively. Then the appearance of the kink can be de- 

+ - - + An analogous scribed as the action of the operator o m Om+l or o m ore+ I . 
approach to the 2D systems has been applied in the 2D ANNNI model (8) 
and in the asymmetric clock model. (9) 

The Hamiltonian H corresponding to the transfer matrix has the 
following form: 

- -  + z z (2) 
m m m 

2 (/* - >Aa),  
7"(l  + 18) 

1 U 

where  

h -  

(3) 

Here l A and l B are the periods of the A and B phases. Obviously, 
14 B = l A + l~. The first term on the right-hand side of Eq. (2) corresponds 
to the migration of soliton lines; the second term describes a small differ- 
ence of the energy of the particles A and B at zero temperature; and the 
third term represents the interaction between the neighboring particles in 
the fictitious lattice. 

Hamiltonian (2) is exactly the Hamiltonian of the X X Z  model in the 
external magnetic field. Using the well-known properties of the X X Z  
model ~ ~0,~ l) we obtain the critical fugacity of the phase (A B):  

Z~e = X/2 (h = 0) (4) 

and the equation of the phase boundary near the critical point Z = Z~e, 
he = 0: 

h A B ( Z  ) = + 8~rGeexp { -- qr2/2~- [ ( G B  - -  Z ) / Z ~ B ]  I/2} (5) 

The phase boundary of the commensurate phases (A)  and ( B )  is defined 
by the equation 

~A(~)(T) = ~A~ ~ T G  + t~ )Z (6) 

Between all these boundaries an incommensurate phase IAB consisting of 
particles A and B is stable. Its origin and properties are the same as those 
for any 2D incommensurate phase. Particularly, the shift of a Bragg 
peak corresponding to the soliton superstructure is proportional to 1/~- 
[.tA(B)(T)I 1/2 or [h - hAB(Z)[ 1/2 (Ref. 12). All the incommensurate phases 
transform continuously one into another. The schematic picture of the 
phase diagram between phases (A)  and ( B )  is shown in Fig. 1. 
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Fig. 1. Typical fragment of the complete devil's staircase is shown. This looks like the phase 
diagram presented in Ref. 13. 

For the structure of the type (A kB) or (AB k) with large k and with 
solitons interacting one with another via a powerlike potential, the consider- 
ation has to be modified slightly, since the critical fugacities of the sets 
consisting of different phases (A kB), (A k+_ IB) ' etc., are close. In the 
vicinity of the critical point of the phase (A kB) only the "particles" A kB 
and A k_+ 1B have to be considered. The problem can be reduced to the 
investigation of the Hamiltonian of planar magnet with the spin S = 1 in 
the external magnetic field: 

W = - Z ~ ( S 2 S 2 +  , + SINS2+,)- h~.S~+ X:S (S~) ~ (7) 
I'R m m 

The same consideration can be applied to the sequence of the main 
commensurate phases ( p )  even in the case of an exponential decay of the 
particle interaction. This problem (at a zero magnetic field) has been 
considered in Refs. 14 and 15. The 1D quantum spin-1 model with 
Hamiltonian (7)~has been shown to be equivalent to the 2D classical XY 
model. Including the external magnetic field one obtains the region of 
commensurate and incommensurate phases similar to Fig. 1. The critical 
behavior remains almost the same as before. 

The general phase diagram is schematically depicted in Fig. 2. For 
definiteness, we put the period P0 of the initial commensurate (solitonless) 
phase equal to 2. The phase diagram consists of an infinite number of 
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T 

~ #/.~COMMENSURATE (P52) ~ ~  SOU TON STRUCTURES 

Fig. 2. Phase diagram for an overlayer with the period p 0 = 2 along the x axis is shown. The 
commensurate,  liquid, and incommensurate  phases are denoted as C, L, and IC, respectively. 
A location of a region of a liquid phase can be explained by the approach presented in Refs. 
16 and 8. 

peaks, corresponding to different commensurate soliton structures. The 
width /X/x of a peak decreases as q U " ( q )  and the critical fugacity Z c 
decreases as U"(q)  with a.n increase of the period q. The critical tempera- 
ture T~(q) behaves as [ln U"(q)]-I .  

Any bifurcation of the commensurate phases can be represented as a 
scaling transformation of the phase diagram, as is shown in Fig. 1. The 
scaling picture is complete, since the critical behavior is the same near any 
critical curve. In such a system phase transitions at zero temperature have 
been shown to be continuous and to take place at points of a Cantor set 
along the /~ axis. This Cantor set of points changes to a set of ranges 
associated with the incommensurate phase at any finite temperature. 

We have also calculated the structure factor S ( k )  of the incommensu- 
rate phase IA~ for the x-ray and neutron scattering. It is given by 

- (8) 

where k is assumed to be close to some Bragg vector k 0 and 6k = k - k o is 
assumed to be directed along the x axis for the sake of simplicity; y is the 
critical exponent of the energy operator for the 8-vertex model given by the 
expression (~7) 

y = 2 - 2 arccos(X/2Z)  
7r 
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The Bragg vector set k 0 for the incommensurate structures is defined by the 
following equation: 

2~r • integer k ~  (l A 
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